Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Fractions and Decimals Class 7 Notes CBSE Maths Chapter 2 (Free PDF Download)

ffImage
banner

Exam - Focused Revision Notes for CBSE Class 7 Maths Chapter 2 - Fractions and Decimals

CBSE Class 7 Maths Chapter 2 Fractions and Decimals revision notes are now available on Vedantu in PDF format. This chapter introduces the concepts of decimals and fractions and their inter-relations. As this chapter is on one of the most fundamental concepts of Maths, fractions, and decimals, our experts have prepared these notes covering the important topics of this chapter and their application in sums. Students can refer to the notes PDF online or download the notes PDF for free for their exam preparation. 


Important Topics covered in CBSE Class 7 Maths Chapter 2 Fractions and Decimals

  • Meaning of Fractions 

  • Representation of Fractions

  • Fractions on Number Line

  • Multiplication of Fractions

  • Fraction as an Operator ‘of’

  • Division of Fractions

  • Reciprocal of a Fraction

  • Types of Fractions

  • An Introduction to Decimals

  • Multiplication of Decimals

  • Division of Decimals

Access Class 7 Maths Chapter 2 - Fractions and Decimals Notes

  • In the previous session, we learned about fractions and decimals, as well as the operations of addition and subtraction on them.

  • Multiplication and division operations on fractions and decimals are now being studied.

  • We've learnt the art of multiplying fractions. When two fractions are multiplied, the numerators and denominators are multiplied separately, and the product is written as the product of numerators by product of denominators. For example, $\dfrac{1}{2}\times \dfrac{3}{2}=\dfrac{3}{4}$

  • A fraction serves as a ‘of' operator, like,$\dfrac{3}{4}$of $2=\dfrac{3}{2}$.

  1. The product of two correct fractions is less than the product of the multiplied fractions.

  2. A proper and an improper fraction's product is smaller than the improper fraction and bigger than the appropriate fraction.

  3. The sum of two improper fractions is larger than the sum of the two fractions.

  • By inverting a fraction upside down, you can get its reciprocal. We've already looked at how to divide two fractions.

  1. When dividing a whole number by a fraction, the reciprocal of the fraction is multiplied by the whole number. For example, $3\div \dfrac{1}{2}=3\times 2=6$

  2. When dividing a fraction by a whole number, the reciprocal of the whole number is multiplied by the fraction. For example,$\dfrac{3}{4}\div5=\dfrac{3}{4}\times \dfrac{1}{5}=\dfrac{3}{20}$.

  3. We multiply the first fraction by the reciprocal of the other while dividing one fraction by another fraction. As a result,  $\dfrac{3}{4}\div \dfrac{5}{2}=\dfrac{3}{4}\times \dfrac{2}{5}=\dfrac{3}{10}$.

  • We learned how to multiply two decimal values as well. Multiply two decimal numbers as whole numbers first before multiplying them as decimal numbers. In both the decimal figures, count the number of digits to the right of the decimal point. Add the total number of digits you've counted. Count the digits from the rightmost spot in the product to get the decimal point. The total acquired before should be used as the count. For example,$0.3\times 0.4=0.12$.

  • To multiply a decimal value by $10,100$ or $1000$we move the decimal point to the right by as many places as the number of zeros over one. For example, $0.24\times 10=2.4,$

$0.24\times 100=24,$

$0.24\times 1000=240.$

  • We've already looked at how to divide the decimal numbers.

  1. To divide a decimal number by a whole number, we must first divide the two values into whole numbers. Then, as with the decimal number, place the decimal point in the quotient. For example,$1.2\div 2=0.6$.

It's worth noting that we're only looking at divisions with a zero remainder.

  1. To determine the quotient when dividing a decimal number by $10,100$ or $1000$, shift the digits in the decimal number to the left by as many places as there are zeros over $1$. For example, 

$12.8\div 10=1.28$,

$12.8\div 100=0.128,$

$12.8\div 1000=0.0128$

  1. To convert the divisor to a whole number when dividing two decimal values, shift the decimal point to the right by an equal number of places in both. After that, split. Thus, $3.6\div 0.3=12$


Revision Notes for CBSE Class 7 Maths Chapter 2 - Free PDF Download

Fraction word is taken from the Latin word “ Fractus” which means broke. Which mainly represent a part of a whole, consisting of a number of equal parts out of a whole. For example, we have a pizza of four equal slices and now we are left with only two slices of pizza. So we can write it in fractional form as 2/4 or ½. Here 2 or 1 is a numerator and 4 or 2 is a denominator. The numerator tells us about the left pizza slices and the denominator tells us about the total number of pizza slices. So in general fraction form is written as a numerator/denominator, Where, denominator ≠ 0. In case the numerator is equal to the denominator then the fraction becomes a whole i.e. 1. This is termed as a unity of fraction.

Types of Fraction

Mainly there are six types of fractions. All these types of fraction are discussed below:

1. Proper Fraction: In this fraction, the numerator is always less than the denominator. It shows the part of a whole.

2. Improper Fraction: In this fraction numerator is always more than the denominator and it shows the mixture of whole and a proper fraction.

3. Mixed Fraction: In this type of fraction we write mixed form as it is the mixture of whole numbers and a fraction.

4. Like Fraction: In this type, there are fractions with the same denominator. 

5. Unlike Fraction: In this fraction, there are fractions with different denominators. 

6. Equivalent Fraction: The fraction which is proportional to each other is termed as an equivalent fraction. 

Decimals

Numbers that are generally used to represent numbers that are smaller than the unit 1 are termed as decimal. It is also known as the base 10 system since each place value is denoted by a power of 10.

When we multiply a decimal number with the whole number then we get the same number of digits after the decimal point as that of the decimal number.

E.g : 22.2×4 = 88.8

When we multiply decimal with power of 10, then in that case the decimal point shifts to the right by the number of zeros in its power.

Example: 22.22 × 100 = 2222

When we multiply the decimal with decimal, then they will give decimal points in the answer as many places are the same as the total number of places right to the decimal points in both numbers.

Example: 22.22 × 2.2 = 48.884


Key Features of Class 7 Maths Chapter 2 Fractions and Decimals

  • Available in PDF format

  • Covers all important topics and subtopics of Fractions and Decimals

  • A step-by-step explanation for sums

  • Prepared by Maths experts

  • Can be downloaded for free of cost

  • These notes are as per the updated CBSE syllabus for Class 7 Maths

Importance of Vedantu Revision Notes While Preparing for Any Exam

Vedantu is always there to help you in doing well in your exams as vedantu provides you top and best study material along with best revision notes prepared by our top educators who are best in their specialised subjects. In our revision notes, we cover all important topics as per board and competitive exams point of view. 

From these revision notes, you can cover all the important topics of a particular subject within an hour. These revision notes also our frequently asked questions along with several multiple choice questions which will help you in practising more and more questions. The more you practice the more you get a command in that subject. 

Vedantu also provides you with revision notes of each particular chapter in a very easy way from where you can target each chapter of maths as each subject has an important role in different exams. Top subject experts of Vedantu are there to prepare the best revision notes for you, so that you can give your best for your dream. We provide notes which have neat and clear diagrams with proper description and content which will help you from a board point of view. 

Check the links given below for more information about each chapter given in the class 7 maths syllabus and you can also download chapter wise revision notes of each subject along with solved MCQ questions and answer writing questions from here you will learn answer framing ability also. So download class 7 CBSE maths Revision Notes in PDF format from the Vedantu site or app.


Conclusion

Vedantu's Fractions and Decimals Class 7 Notes offer a comprehensive and accessible resource for CBSE Maths Chapter 2, presented in a user-friendly Free PDF Download. These notes serve as a valuable aid for Class 7 students, enabling them to grasp the fundamental concepts of fractions and decimals with ease. The well-structured content and detailed explanations help foster a strong foundation in mathematical principles. Vedantu's commitment to quality education is evident through this initiative, as it empowers students to excel in their academic journey. By providing these free resources, Vedantu continues to contribute significantly to the advancement of education and the overall growth of young learners.



Related Study Materials for Class 7 Maths Chapter 2 Fractions and Decimals



Chapter-wise Links for Class 7 Maths Notes


Important Study Materials for Class 7 Maths

FAQs on Fractions and Decimals Class 7 Notes CBSE Maths Chapter 2 (Free PDF Download)

1. What are the key concepts summarized in the Revision Notes for Class 7 Maths Chapter 2 – Fractions and Decimals?

The Revision Notes for Class 7 Maths Chapter 2 focus on fundamental ideas such as types of fractions (proper, improper, mixed, like, unlike, equivalent), the concept of decimals and their representation, along with core operations—addition, subtraction, multiplication, and division of both fractions and decimals. The notes also cover representation on the number line and practical applications as per the CBSE 2025-26 exam pattern.

2. How do the Revision Notes help students quickly revise Fractions and Decimals in Class 7 Maths?

The notes provide a succinct summary of all essential formulas, definitions, and step-wise methods for solving typical problems. They use clear language and examples, enabling quick revision before exams and supporting students in linking concepts systematically for efficient exam preparation.

3. Which areas require extra attention while revising Fractions and Decimals for Class 7?

While using Revision Notes, students should focus especially on:

  • Identifying different types of fractions
  • Rules for addition and subtraction (common denominators)
  • Correct method to multiply and divide fractions and decimals
  • Placement of decimal points in multiplication/division
  • Word problems that combine fractions and decimals in practical contexts
Mastery in these areas ensures strong performance in CBSE assessments.

4. What is the best sequence to revise topics in Fractions and Decimals Class 7 for exam readiness?

For optimal revision, students should first understand the meaning and types of fractions, then decimals, followed by basic operations (addition, subtraction, multiplication, division) in both, and finally tackle application questions and word problems that integrate these concepts.

5. Why is it important to learn the reciprocal concept in fractions according to Class 7 revision notes?

The reciprocal of a fraction is crucial for division operations. Dividing by a fraction equates to multiplying by its reciprocal, a concept tested frequently in CBSE exams. Mastery helps prevent calculation errors, especially in multi-step problems involving both multiplication and division of fractions.

6. What are common misconceptions students have regarding decimals in Class 7, and how do the notes address them?

Common misconceptions include misplacing the decimal point during multiplication and division, or confusing the operations of fractions versus decimals. The Revision Notes clarify procedures with stepwise examples, helping students avoid errors and solidifying correct methods.

7. How does understanding fractions and decimals benefit students in other areas of mathematics?

Strong concepts in fractions and decimals are the foundation for topics like percentages, ratios, algebra, and measurement. Mastery at this level supports problem-solving across various chapters and is essential for higher-level Maths in later classes.

8. What is a quick method from the notes to check the correctness of a simplified fraction?

To verify a simplified fraction, check that the numerator and denominator have no common factors other than 1. Dividing both by their highest common factor (HCF) ensures the fraction is in its lowest form, as highlighted in the Revision Notes.

9. How can students connect the concept of fractions and decimals to real-life scenarios, as suggested in the Revision Notes?

The Revision Notes often use real-life examples, such as money calculations, measurement of length/weight, or dividing objects, to illustrate how fractions and decimals function in daily life. This practical connection aids in better understanding and retention of the concepts.

10. What quick revision strategies are recommended for Fractions and Decimals before the exam?

Advised strategies include:

  • Reviewing all summary tables in the notes
  • Practicing key examples for each operation
  • Making a concept map linking types and operations
  • Working on a mix of objective and application-based questions from the Revision Notes
This approach enables efficient recall and boosts exam confidence, as per the Class 7 CBSE Maths syllabus.

OSZAR »